While classic antibiotics require non-resistant cells, hours to work and only kill cells that are metabolically active, fast-acting Artilysin®s destroy resistant and persistent bacterial cells within minutes.
Antibiotics vs. Artilysin®

ANTIBIOTICS | ARTILYSIN®S |
---|---|
Resistance | Low resistance potential |
Damage the microbiome | Kill only targeted bacteria |
Weaken the immune system | No impact on the immune system |
Accumulate in the environment | Rapidly biodegradable and do not accumulate |
Slow-acting | Fast-acting |
Ineffective against persistent cells | Treatment of chronic bacterial infections |
Limited activity in biofilm | Work in biofilm |
Cause numerous side-effects | Very limited potential for side-effects |
Often toxic | Non-toxic |
Mechanism of Action
Artilysin® molecules selectively attack the cell wall of bacterial cells leading to cell death caused by high osmotic pressure. β-lactam antibiotics (penicillins, cephalosporins and carbapenems) represent the most important and widely used group of antibiotics. These antibiotics also target the bacterial cell wall. However, they inhibit the assembly of a functional peptidoglycan by specific binding to enzymes of dividing cells.

The cell wall is composed of a peptidoglycan layer which surrounds the plasma membrane. Additionally, the peptidoglycan of Gram-negative bacteria is covered by an outer membrane mainly consisting of phospholipids and lipopolysaccharides (LPS) which are stabilised by divalent cations like Ca2+ or Mg2+.

Due to the positive charges and hydrophobic properties of the targeting peptides, Artilysin®s destabilize the outer membrane of Gram-negative bacteria and can reach the peptidoglycan.
In the case of Gram-positive bacteria, the peptide moieties of Artilysin®s increase the affinity of the molecules to the bacterial cell wall. In contrast to Artilysin®s, β-lactam antibiotics are translocated through the outer membrane via porins into the periplasmic space.

Subsequently, β-lactam antibiotics bind to enzymes called peptidoglycan transpeptidases and thus inhibit the crosslinking of peptidoglycan precursors to build the functional cell wall of metabolically active and dividing cells. This leads to the death of the bacteria. Unlike antibiotics, Artilysin®s do not require an active metabolism because they work directly on the cell envelope by combining electrostatic and hydrophobic peptides with a muralytic moiety. Under high osmotic pressure, the inner membrane blebs out and finally the bacterial cell bursts.

In summary, while classic antibiotics require hours to kill only metabolically active cells that are not resistant to the drug being used, their fast mode of action allows Artilysin®s to kill all bacterial cells within minutes or even seconds.